Abstract

Cache miss rates are an important subset of system model inputs. Cache miss rate models are used for broad design space exploration in which many cache configurations cannot be simulated directly due to limitations of trace collection setups or available resources. Often it is not practical to simulate large caches. Large processor counts and consequent potentially high degree of cache sharing are frequently not reproducible on small existing systems. In this article, we present an approach to building multivariate regression models for predicting cache miss rates beyond the range of collectible data. The extrapolation model attempts to accurately estimate the high-level trend of the existing data, which can be extended in a natural way. We extend previous work by its applicability to multiple miss rate components and its ability to model a wide range of cache parameters, including size, line size, associativity and sharing. The stability of extrapolation is recognized to be a crucial requirement. The proposed extrapolation model is shown to be stable to small data perturbations that may be introduced during data collection.We show the effectiveness of the technique by applying it to two commercial workloads. The wide design space contains configurations that are much larger than those for which miss rate data were available. The fitted data match the simulation data very well. The various curves show how a miss rate model is useful for not only estimating the performance of specific configurations, but also for providing insight into miss rate trends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.