Abstract

BackgroundBreast cancer is one of the leading causes of cancer-related deaths in women, and there is a demand in developing an Asian-based genetic profiling database for breast cancer in improving the treatment response. This study aimed to determine molecular alternations and identify potential therapeutic targets by analyzing the genetic profiling from a cohort of Taiwanese breast cancers using a commercialized next-generation sequencing (NGS) targeted panel.MethodsThe study population comprised a broad spectrum of breast cancer patients in Taiwan, including Group 1: planned to receive first-line surgery and followed by adjuvant therapy, or early relapse within three years, Group 2: planned to receive first-line neoadjuvant therapy and followed by surgery, and Group 3: de novo stage IV, or stage IV with recurrence beyond three years. Molecular profiles were determined using Thermo Fisher™ Oncomine™ Comprehensive Assay version 3 (TMO comprehensive assay) from Formalin-Fixed Paraffin-Embedded (FFPE) tissues. Level of actionability was evaluated with the ESMO Scale of clinical actionability of molecular targets (ESCAT).ResultsA total of 380 TMO comprehensive assays were conducted on 372 patients, and we presented targeted sequencing analyses of Tier I: alteration-drug match associated with improved outcome in clinical trials including ERBB2 amplification, BRCA1/2 germline mutation, PIK3CA mutation, and NTRK translocation, and Tier II: antitumor activity associated with the matched alteration-drug but lack of prospective outcome data including PTEN loss, ESR1 mutation, AKT1 mutation, and ERBB2 mutation, and Tier III: matched drug-alteration that led to clinical benefit in another tumor type including MDM2 amplification, and ERBB3 mutation. Among them, 249 (66%) showed at least one actionable alternation based on the ESCAT criteria. The most frequent impacted genes (all variants combined within each sample) were PIK3CA (38%), followed by ERBB2 (23%), ESR1 (10%), AKT1 (6%), and BRCA2 (5%), and the remaining rare variants (less than 5% of assayed cohort) were BRCA1 (3%), MDM2 (2.2%), and ERBB3 (1.1%).ConclusionTargeted sequencing of actionable genes is believed to provide clinical applicability and substantial benefits for Taiwanese breast cancer patients. A valid scale of clinical actionability should be adopted for precision medicine practice under multidisciplinary molecular tumor board.

Highlights

  • Breast cancer is one of the leading causes of cancer-related deaths in women, and there is a demand in developing an Asian-based genetic profiling database for breast cancer in improving the treatment response

  • A total of 380 Thermo FisherTM OncomineTM (TMO) comprehensive assays were conducted on 372 patients, and we presented targeted sequencing analyses of Tier I: alteration-drug match associated with improved outcome in clinical trials including ERBB2 amplification, BRCA1/2 germline mutation, PIK3CA mutation, and NTRK translocation, and Tier II: antitumor activity associated with the matched alteration-drug but lack of prospective outcome data including PTEN loss, ESR1 mutation, AKT1 mutation, and ERBB2 mutation, and Tier III: matched drug-alteration that led to clinical benefit in another tumor type including MDM2 amplification, and ERBB3 mutation

  • The most frequent impacted genes were PIK3CA (38%), followed by ERBB2 (23%), ESR1 (10%), AKT1 (6%), and BRCA2 (5%), and the remaining rare variants were BRCA1 (3%), MDM2 (2.2%), and ERBB3 (1.1%)

Read more

Summary

Introduction

Breast cancer is one of the leading causes of cancer-related deaths in women, and there is a demand in developing an Asian-based genetic profiling database for breast cancer in improving the treatment response. In Taiwan, breast cancer is one of the leading causes of female malignancy and ranked fourth of cancer-related deaths. The routine practices for breast cancer diagnosis and surveillance include multiple imaging modalities. Tissue biopsy with pathologically confirmed malignancy is the standard strategy for breast cancer diagnosis and classification, while clinical and microscopic features including stage, histological subtype, grading, and immunohistochemistry (IHC) staining of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 (MKI67), are determined to augment treatment decisions. For serum biomarkers of breast cancer surveillance such as CA 15–3 and carcinoembryonic antigen (CEA), the specificity and sensitivity are usually far from the demands of clinical utility [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call