Abstract

BackgroundUsher syndrome (USH) is the most common disease causing combined deafness and blindness. It is predominantly an autosomal recessive genetic disorder with occasionally digenic cases. Molecular diagnosis of USH patients is important for disease management. Few studies have tried to find the genetic cause of USH in Chinese patients. This study was designed to determine the mutation spectrum of Chinese USH patients.MethodsWe applied next generation sequencing to characterize the mutation spectrum in 67 independent Chinese families with at least one member diagnosed with USH. Blood was collected at Peking Union Medical College Hospital. This cohort is one of the largest USH cohorts reported. We utilized customized panel and whole exome sequencing, variant analysis, Sanger validation and segregation tests to find disease causing mutations in these families.ResultsWe identified biallelic disease causing mutations in known USH genes in 70 % (49) of our patients. As has been previously reported, MYO7A is the most frequently mutated gene in our USH type I patients while USH2A is the most mutated gene in our USH type II patients. In addition, we identify mutations in CLRN1, DFNB31, GPR98 and PCDH15 for the first time in Chinese USH patients. Together, mutations in CLRN1, DNFB31, GPR98 and PCDH15 account for 11.4 % of disease in our cohort. Interestingly, although the spectrum of disease genes is quite similar between our Chinese patient cohort and other patient cohorts from different (and primarily Caucasian) ethnic backgrounds, the mutations themselves are dramatically different. In particular, 76 % (52/68) of alleles found in this study have never been previously reported. Interestingly, we observed a strong enrichment for severe protein truncating mutations expected to have severe functional consequence on the protein in USH II patients compared to the reported mutation spectrum in RP patients, who often carry partial protein truncating mutations.ConclusionsOur study provides the first comprehensive genetic characterization of a large collection of Chinese USH patients. Up to 90 % of USH patients have disease caused by mutations in known USH disease genes. By combining NGS-based molecular diagnosis and patient clinical information, a more accurate diagnosis, prognosis and personalized treatment of USH patients can be achieved.Electronic supplementary materialThe online version of this article (doi:10.1186/s13023-015-0329-3) contains supplementary material, which is available to authorized users.

Highlights

  • Usher syndrome (USH) is the most common disease causing combined deafness and blindness

  • Usher Syndrome (USH) is the most common disease of combined deafness and blindness. It is characterized by sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and manifests with or without vestibular dysfunction

  • We considered reported digenic inheritance of PCDH15/CDH23, PDZD7/GPR98 and PDZD7/USH2A

Read more

Summary

Introduction

Usher syndrome (USH) is the most common disease causing combined deafness and blindness. It is predominantly an autosomal recessive genetic disorder with occasionally digenic cases. Usher Syndrome (USH) is the most common disease of combined deafness and blindness. It is characterized by sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and manifests with or without vestibular dysfunction. USH II patients are born with moderate to severe hearing loss, normal balance, and usually develop RP during adolescence. USH III patients have normal or near normal balance, progressive hearing loss, and vision problems varying in severity which usually develop during adolescence [1]. It is worth noting that mutations in many of the USH genes can lead to deafness without a retinal phenotype [6,7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call