Abstract

This paper investigates the modeling, simulation and implementation of a wind power system based on a Permanent Magnet Synchronous Generator (PMSG). A comprehensive portfolio of control schemes are discussed and verified by Matlab/Simulink simulations, in the context of grid integration and Maximum Power Point Tracking (MPPT) operations. Particularly, to investigate the Fault-Ride-Through (FRT) and robustness capabilities, various wind speed scenarios and a line voltage droop are introduced to the wind power system to investigate its dynamic performance. A reference power curve, i.e., power versus generator speed, is employed in the turbine model to implement the MPPT. In addition, a position/speed sensorless operation approach based on Sliding Mode Observer (SMO) is implemented to reduce system cost and improve control reliability. Simulation and experimental results demonstrate the robust control of the power and speed in the PMSG wind power systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.