Abstract

A numerical model for calculating the emission characteristics of diode laser arrays and broad-area devices operating well above threshold is discussed. This model uses the beam propagation technique for determining the field intensities for several lateral modes, while simultaneously and self-consistently solving for the two-dimensional current flow through the laser structure and the subsequent carrier diffusion in the active region. The active-region temperature distribution is also computed in a self-consistent manner, based on the flow of heat generated in the active region through the layered device structure to a constant-temperature heat sink. The model is applied by investigating the sensitivity of the lasing modes of a broad-area diode laser to variations in the lateral temperature distribution.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call