Abstract

In this paper, the issue of numerical modeling of radiation-damaged silicon devices is discussed, with reference to radiation detectors employed in high-energy physics experiments. Since the actual physical picture is far too complex to be accounted for at a first-principle (i.e., defect kinetics) level and not yet fully understood, a hierarchical approach has been followed looking for a suitable approximation of macroscopic changes of the electrical behavior of silicon device induced by radiation damage. In particular, a three deep-level trapping mechanism is accounted for by means of Shockley-Read-Hall theory, whereas the shallow-level sensitivity on the radiation is considered by means of a donor-removal model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.