Abstract

Modeling and analysis of a coaxial helicopter’s dynamics is a demanding work because of the complex characteristics in rotor aerodynamics and swashplate mechanism. In this paper, a complete dynamic model for an unmanned coaxial helicopter is established which is proven accurate but simple enough for dynamic analysis and real time simulation. An 14-states aerodynamic model including flapping dynamics and induced velocities is derived considering interaction between rotors. The model is validated to have a good consistency with existed experimental and CFD results. After that, by introducing swashplate kinematics, actuator dynamics and rigid body dynamics, a complete model is constructed. Trim analysis is performed over a large range of forward flight speed, and the hovering performance is analyzed by calculating the necessary power and rotors’ figure of merit in different altitude and load. The coupling between heave and yaw motion is also analyzed to propose a decoupling strategy in control design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.