Abstract

The textile industry is one of the largest environmental polluters in the world. Although waste management via anaerobic digestion (AD) is a sustainable strategy to transform waste into clean energy and water recovery, the efficiency of the AD process is reduced by the presence of recalcitrant materials, chemicals, and toxic contents. This study aims to investigate the performance of several chemical, physical, and biological pretreatments applied to improve the biodegradability of textile waste. We performed a meta-analysis with 117 data extracted from 13 published articles that evaluated the efficiency of pretreatments applied to textile waste prior to AD to increase biogas production measured as methane (CH4) yield. Even though the majority of the studies have focused on the effect of chemical and physical pretreatments, our results showed that the application of biological pretreatments are more efficient and eco-friendlier. Biological pretreatments can increase CH4 yield by up to 360% with lower environmental risk and lower operating costs, while producing clean energy and a cleaner waste stream. Biological pretreatments also avoid the addition of chemicals and favor the reuse of textile wastewater, decreasing the current demand for clean water and increasing resource circularity in the textile industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call