Abstract

The cell wall acts as one of the first barriers of the plant against various biotic stressors. Previous studies have shown that alterations in wall polysaccharides may influence crop disease resistance. In the grapevine family, several native species (e.g., Chinese wild grapevine) show a naturally higher resistance to microbial pathogens than cultivated species (e.g., Vitis vinifera), and this trait could be inherited through breeding. Despite the importance of the cell wall in plant immunity, there are currently no comprehensive cell wall profiles of grapevine leaves displaying differing resistance phenotypes, due to the complex nature of the cell wall and the limitations of analytical techniques available. In this study, the cutting-edge comprehensive carbohydrate microarray technology was applied to profile uninfected leaves of the susceptible cultivar (Vitis vinifera cv. “Cabernet Sauvignon”), a resistant cultivar (Vitis amurensis cv. “Shuanghong”) and a hybrid offspring cross displaying moderate resistance. The microarray approach uses monoclonal antibodies, which recognize polysaccharides epitopes, and found that epitope abundances of highly esterified homogalacturonan (HG), xyloglucan (with XXXG motif), (galacto)(gluco)mannan and arabinogalactan protein (AGP) appeared to be positively correlated with the high resistance of Vitis amurensis cv. “Shuanghong” to mildew. The quantification work by gas chromatography did not reveal any significant differences for the monosaccharide constituents, suggesting that polysaccharide structural alterations may contribute more crucially to the resistance observed; this is again supported by the contact infrared spectroscopy of cell wall residues, revealing chemical functional group changes (e.g., esterification of pectin). The identification of certain wall polysaccharides that showed alterations could be further correlated with resistance to mildew. Data from the use of the hybrid material in this study have preliminarily suggested that these traits could be inherited and may be applied as potential structural biomarkers in future breeding work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.