Abstract
The plastic waste accumulation has been increasing and a solution other than landfilling is required. Due to the high cost of recycling, thermal treatment could be an option. However, the existence of polyvinyl chloride (PVC) would release hydrochloric acid which would cause emission problems as well as damage to the reactor systems. The thermal degradation of PVC has been studied over the years. However, the mechanism of the PVC thermal degradation is not fully developed. Specifically, the mechanism of the PVC thermal degradation at medium temperatures, which is more practical for industries, is still lacking. A degradation temperature of 300 °C was used to study the dehydrochlorination behavior of PVC. A rather comprehensive mechanism with four consecutive reactions has been developed based on the micro-pyrolysis experiments and has been validated and proved by predicting the mass loss, chlorine content, heat content and elemental composition with high precision experimental data in different reactors with/without heat transfer coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.