Abstract
An all-fiberized linearly polarized nanosecond master oscillator power amplifier based on polarization-maintaining large-mode-area Yb-doped tapered double cladding fiber (T-DCF) is comprehensively investigated. Firstly, excellent performance of the Yb-doped T-DCF for suppressing nonlinear effects, including stimulated Brillouin scattering (SBS) effect and spectral broadening effects, is experimentally demonstrated and qualitatively analyzed. An SBS-free average output power of 8.8 W is obtained under pulse duration of 3.8 ns and repetition frequency of 80 kHz, with peak power of ∼30 kW, pulse energy of 110 µJ and nearly transform-limited linewidth of < 283.8 MHz respectively. The polarization extinction ratio is > 16 dB and near-diffraction-limited beam quality with M2 factor of 1.2 is maintained at the maximal output power. Moreover, the discussion on the optimization of the system for further power scaling is carried out based a nonlinear dynamic model that is capable of simultaneously evaluating the time-domain and frequency-domain evolution properties of the narrow-linewidth linearly-polarized pulsed laser, and meaningful conclusion is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.