Abstract

The purpose of this study was to investigate the influence of the microstructure on sliding wear and hardness of four different Co–Cr–C alloys at room and elevated temperature. Different microstructures were produced by applying three different processes. The hardness, hot hardness and wear loss at room temperature of these alloys correlate strongly with the carbide volume content. In sliding wear tests against an Al2O3 ball, abrasive wear occurs at room temperature. The size or geometric arrangement of the carbides or metal matrix plays a minor role at room temperature. At 600 °C the wear behaviour changes due to the softening matrix. In alloys with small free matrix path lengths, the highest wear rates occur due to micro-fatigue and micro-cracking. In hypoeutectic alloys with a high free matrix path length, the carbides lose their effectiveness due to the lack of support by the matrix. In these alloys, wear is dominated by the properties of the matrix. A hypereutectic casting alloy with large primary carbides shows the best wear results, as the carbides support themselves due to their size and retain their wear-reducing effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.