Abstract
Quantum oscillation (QO), a physical phenomenon that reflects the characteristics of the Fermi surface and transport fermions, has been extensively observed in metals and semimetals through various approaches, like magnetostriction, magnetization, resistivity, and thermoelectric power. However, only limited oscillation frequencies can be revealed by the aforementioned methods, particularly in semimetals with intricate Fermi pockets and associated magnetic breakdown phenomena. In this paper, we present the application of an ac composite magnetoelectric (ME) technique to measure the QOs of a topological nodal-line semimetal, ZrSiS, which possesses six fundamental QO frequencies. By employing the ME technique with a maximum magnetic field of 13 T and a minimum temperature of 2 K, we are able to capture all the fundamental frequencies and most of the permissible magnetic breakdown frequencies. Remarkably, a series of magnetic breakdown frequencies around 8000 T were revealed even in a magnetic field as low as 7.5 T. These findings highlight the ME technique as an ultrahigh-sensitive tool for studying Dirac Fermions and other topological semimetals with complex Fermi surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.