Abstract

The prerequisite for cellulosic biochemical production from lignocellulosic materials is efficient enzymatic hydrolysis that is a complicated heterogeneous catalytic process and affected by the complex lignin-cellulose-hemicellulose network. Understanding the main influencing factors for enzymatic hydrolysis is of substantial significance to guide the design of a biorefinery process. An experimental study of the pretreatment indicated that acid pretreatment is preferable for herbaceous feedstocks. Therefore, the classic dilute sulfuric acid pretreatment was utilized to hydrolyze and remove hemicellulose from three representative types of agricultural straws at various intensities. From the enzymatic hydrolysis of residual cellulose perspective, the crystallinity index and enzyme accessibility of the pretreated materials were also mathematically correlated to hemicellulose removals, respectively. For the better insight and understanding of the mathematical logics, the linear and nonlinear kinetic models were therefore compared, and the relationship was established by the five-parameter logistic equations and Allosteric sigmoidal models with well fittings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.