Abstract

A commercially available microporous polypropylene hollow fiber membranes were employed for air gap and water gap membrane distillation (i.e., AGMD and WGMD, respectively) processes. In both configurations, the outer surface of commercially available dense polypropylene hollow fibers was used as the condensing surface of the permeate. The performance levels of the AGMD and WGMD processes utilizing microporous polyvinylidene fluoride membranes fabricated in-house were compared with those using polypropylene membranes. Under the given specific operating conditions, the maximum mean permeation flux values in AGMD and WGMD using polypropylene hollow fiber membranes were approximately 24 and 27 kg/m2h, respectively. In addition, theoretical studies on AGMD and WGMD using the designed hollow fiber module configuration were performed. The predicted results were found to well agree with the experimental results, thus verifying their validity. Moreover, parametric studies were conducted to identify the optimum evaporation-to-condensation surface area ratio (i.e., optimum numbers of hollow fiber membranes and hollow fiber condensers) in terms of specific energy consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.