Abstract

Chlortetracycline hydrochloride (CTC) is one of the prevailing antibiotic pollutants that harm both environmental ecosystem and human health. Herein, Zr-based metal-organic gels (Zr-MOGs) with lower-coordinated active sites and hierarchically porous structures are fabricated via a facile straightforward room-temperature strategy for CTC treatment. More importantly, we incorporated the powder Zr-MOGs into low-cost sodium alginate (SA) matrix to achieve shaped Zr-based metal-organic gel/SA beads for enhancing the adsorption ability and ameliorating the recyclability. The Langmuir maximum adsorption capacities of Zr-MOGs and Zr-MOG/SA beads could reach 143.9 mg/g and 246.9 mg/g, respectively. What's more, in the manual syringe unit and continuous bead column experiments, Zr-MOG/SA beads could achieve an eluted CTC removal ratio as high as 96.3% and 95.5% in the river water sample, respectively. On top of that, the adsorption mechanisms were put forward as a combination of pore filling, electrostatic interaction, hydrophilic-lipophilic balance, coordination, π-π interaction as well as hydrogen bonding interaction. This study outlines a workable strategy for the facile preparation of candidate adsorbents for wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call