Abstract

Chikungunya virus (CHIKV) is a mosquito‐borne alphavirus that causes global epidemics of debilitating disease worldwide. To gain functional insight into the host cellular genes required for virus infection, we performed whole‐blood RNA‐seq, 37‐plex mass cytometry of peripheral blood mononuclear cells (PBMCs), and serum cytokine measurements of acute‐ and convalescent‐phase samples obtained from 42 children naturally infected with CHIKV. Semi‐supervised classification and clustering of single‐cell events into 57 sub‐communities of canonical leukocyte phenotypes revealed a monocyte‐driven response to acute infection, with the greatest expansions in “intermediate” CD14++ CD16+ monocytes and an activated subpopulation of CD14+ monocytes. Increases in acute‐phase CHIKV envelope protein E2 expression were highest for monocytes and dendritic cells. Serum cytokine measurements confirmed significant acute‐phase upregulation of monocyte chemoattractants. Distinct transcriptomic signatures were associated with infection timepoint, as well as convalescent‐phase anti‐CHIKV antibody titer, acute‐phase viremia, and symptom severity. We present a multiscale network that summarizes all observed modulations across cellular and transcriptomic levels and their interactions with clinical outcomes, providing a uniquely global view of the biomolecular landscape of human CHIKV infection.

Highlights

  • Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes global epidemics of debilitating disease worldwide

  • Patients suspected of dengue virus (DENV) or CHIKV infection were sampled and tested, and diagnosis of chikungunya was confirmed by real-time RT–PCR in the acutephase sample

  • A total of 42 pediatric cases with detectable CHIKV viremia presenting to the hospital between November 2014 and October 2015 were included, from which acute (1–2 d p.s.o.) and convalescent (15–17 d p.s.o.) samples were obtained for analysis, for a total of 84 samples

Read more

Summary

Introduction

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes global epidemics of debilitating disease worldwide. To gain functional insight into the host cellular genes required for virus infection, we performed whole-blood RNA-seq, 37-plex mass cytometry of peripheral blood mononuclear cells (PBMCs), and serum cytokine measurements of acute- and convalescent-phase samples obtained from 42 children naturally infected with CHIKV. Increases in acute-phase CHIKV envelope protein E2 expression were highest for monocytes and dendritic cells. Serum cytokine measurements confirmed significant acute-phase upregulation of monocyte chemoattractants. Distinct transcriptomic signatures were associated with infection timepoint, as well as convalescent-phase antiCHIKV antibody titer, acute-phase viremia, and symptom severity. We present a multiscale network that summarizes all observed modulations across cellular and transcriptomic levels and their interactions with clinical outcomes, providing a uniquely global view of the biomolecular landscape of human CHIKV infection

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.