Abstract

Analysis of orthology is important for understanding protein conservation, function, and phylogenomics. In this study, we performed a comprehensive analysis of gene orthology in the family Ascoviridae based on identification of 366 protein homologue groups and phylogenetic analysis of 34 non-single-copy proteins. Our findings revealed 90 newly annotated proteins, five newly identified core proteins for the family Ascoviridae, and 14 core proteins for the genus Ascovirus. A phylogenomic tree of 11 Ascoviridae members was constructed based on a concatenation of 35 of the 45 ortholog groups. In combination with phosphoproteomic results and conservation estimations, 30 conserved phosphorylation sites on 17 phosphoproteins were identified from a total of 176 phosphosites on 57 phosphoproteins from Heliothis virescens ascovirus 3h (HvAV-3h), providing potential research targets for investigating the role of these protein in the regulation of viral infection. This study will facilitate genome annotation and comparison of further Ascoviridae members as well as functional genomic investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call