Abstract

This paper presents a comprehensive approach based on fuzzy logic and probabilistic neural network (PNN) to identify location, relative level, and type of multiple harmonic sources in power distribution systems. The location and relative level of harmonic sources were determined in the fuzzy stage by interpreting harmonic powers together with network impedances. Then, the type of the harmonic sources was classified in the neural stage using adjusted PNN. In the proposed method, the harmonic powers were considered as classification features. Then, ReliefF feature selection method was used to reduce the redundant data and dimension of features vector. A new modified adaptive imperialist competitive algorithm (MAICA) was proposed to determine the only adjusted parameter of the PNN classifier. Furthermore, a deep belief network (DBN) was applied in the neural stage, and its results were compared with the PNN classifier. The proposed approach was evaluated on IEEE 18-bus and IEEE 69-bus test systems. Unlike the single point methods, the presented method provides information on multiple harmonic sources in the whole of the distribution system. The results show that the comprehensive approach identifies the multiple harmonic sources with high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.