Abstract

Glycosylation is one of the most complex posttranslational protein modifications. Its importance has been established not only for eukaryotes but also for a variety of prokaryotic cellular processes, such as biofilm formation, motility, and mating. However, comprehensive glycoproteomic analyses are largely missing in prokaryotes. Here, we extend the phenotypic characterization of N-glycosylation pathway mutants in Haloferax volcanii and provide a detailed glycoproteome for this model archaeon through the mass spectrometric analysis of intact glycopeptides. Using in-depth glycoproteomic datasets generated for the wild-type (WT) and mutant strains as well as a reanalysis of datasets within the Archaeal Proteome Project (ArcPP), we identify the largest archaeal glycoproteome described so far. We further show that different N-glycosylation pathways can modify the same glycosites under the same culture conditions. The extent and complexity of the Hfx. volcanii N-glycoproteome revealed here provide new insights into the roles of N-glycosylation in archaeal cell biology.

Highlights

  • Posttranslational modifications (PTMs) increase the complexity of the proteome and may affect functional activity, localization, and interactions of proteins

  • Prokaryotic protein glycosylation was first detected in the S-layer glycoprotein (SLG) of the archaeon Halobacterium salinarum [5] and soon thereafter in Haloferax volcanii [6]

  • A growth curve showed that the ΔaglB strain exhibited a slightly slower growth than the WT and Δagl15 strains during mid-logarithmic phase but reached the same optical density at 600 nm (OD600) at stationary phase as the WT (Fig 2A)

Read more

Summary

Introduction

Posttranslational modifications (PTMs) increase the complexity of the proteome and may affect functional activity, localization, and interactions of proteins. Among the plethora of PTMs, glycosylation is one of the most complex and is encountered in all 3 domains of life, eukaryotes, bacteria, and archaea. The wide distribution and importance of glycosylation in eukaryotes, including its crucial roles in human diseases, have been well established over the past decades [1,2,3,4]. More and more prokaryotes, including bacteria, were found to carry glycan modifications of proteins. It is well established that protein glycosylation is common in prokaryotes, and its importance in a variety of biomedically and biotechnologically relevant processes has been revealed such

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call