Abstract

BackgroundSensorineural hearing loss (SNHL) is the most common sensory impairment. Comprehensive next-generation sequencing (NGS) has become the standard for the etiological diagnosis of early-onset SNHL. However, accurate selection of target genomic regions (gene panel/exome/genome), analytical performance and variant interpretation remain relevant difficulties for its clinical implementation.MethodsWe developed a novel NGS panel with 199 genes associated with non-syndromic and/or syndromic SNHL. We evaluated the analytical sensitivity and specificity of the panel on 1624 known single nucleotide variants (SNVs) and indels on a mixture of genomic DNA from 10 previously characterized lymphoblastoid cell lines, and analyzed 50 Spanish patients with presumed hereditary SNHL not caused by GJB2/GJB6, OTOF nor MT-RNR1 mutations.ResultsThe analytical sensitivity of the test to detect SNVs and indels on the DNA mixture from the cell lines was > 99.5%, with a specificity > 99.9%. The diagnostic yield on the SNHL patients was 42% (21/50): 47.6% (10/21) with autosomal recessive inheritance pattern (BSND, CDH23, MYO15A, STRC [n = 2], USH2A [n = 3], RDX, SLC26A4); 38.1% (8/21) autosomal dominant (ACTG1 [n = 3; 2 de novo], CHD7, GATA3 [de novo], MITF, P2RX2, SOX10), and 14.3% (3/21) X-linked (COL4A5 [de novo], POU3F4, PRPS1). 46.9% of causative variants (15/32) were not in the databases. 28.6% of genetically diagnosed cases (6/21) had previously undetected syndromes (Barakat, Usher type 2A [n = 3] and Waardenburg [n = 2]). 19% of genetic diagnoses (4/21) were attributable to large deletions/duplications (STRC deletion [n = 2]; partial CDH23 duplication; RDX exon 2 deletion).ConclusionsIn the era of precision medicine, obtaining an etiologic diagnosis of SNHL is imperative. Here, we contribute to show that, with the right methodology, NGS can be transferred to the clinical practice, boosting the yield of SNHL genetic diagnosis to 50–60% (including GJB2/GJB6 alterations), improving diagnostic/prognostic accuracy, refining genetic and reproductive counseling and revealing clinically relevant undiagnosed syndromes.

Highlights

  • Sensorineural hearing loss (SNHL) is the most common sensory impairment

  • 1,034,047/1034817 true negative positions of the target region were called by the platform as not bearing single nucleotide variants (SNVs) or indels, representing a specificity of 0.9992 (> 99.9%)

  • These included 25 instances of SNVs or indels and 4 Copy number variations (CNVs): 1 heterozygous partial duplication of CDH23, 1 homozygous deletion of RDX exon 2 and 2 homozygous STRC whole gene deletions

Read more

Summary

Introduction

Comprehensive next-generation sequencing (NGS) has become the standard for the etiological diagnosis of early-onset SNHL. Alterations in the GJB2 and GJB6 genes (DNFB1 locus) account for a large proportion of cases in different populations (10– 40%) [2, 3], many cases remain undiagnosed after GJB2/GJB6 testing. This is not surprising given the extreme genetic and phenotypic heterogeneity of HL, with more than 400 syndromes that include HL as a feature and more than 100 genes associated with nonsyndromic SNHL [1]. Genetic diagnosis of SNHL has evolved from single-mutation Sanger sequencing to comprehensive multi-gene testing, and NGS has become the new standard of care [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call