Abstract
Protein palmitoylation, the most common and the only reversible post-translational lipid modification following protein translation, plays a pivotal role in the biochemical and physiological processes of both animals and plants. DHHC proteins, enriched with DHHC (Asp-His-His-Cys) domains, serve as catalyst for protein palmitoylation. However, research on DHHC in cotton remains scarce. This study conducted a systematic characterization and bioinformatics analysis on G. arboreum, G. raimondii, G. hirsutum, and G. barbadense, detecting 38, 37, 74, and 74 DHHC genes, respectively. Phylogenetic analysis categorized the DHHC gene family into six subgroups, consistent with previous evolutionary studies in Arabidopsis and rice. A further examination of protein structure revealed a correlation between genetic relatedness, structural similarity, and functional identity. Cis-element analysis identified elements predominantly associated with light response, stress, growth and development, and plant hormones. The integration of cotton seed development transcriptome, tissue expression pattern analysis, and population transcriptome data collectively suggests that Ghir_A05G027650 and Ghir_D05G027670 are promising candidate genes influencing seed development in upland cotton. Conversely, Gbar_A04G010750 and Gbar_A12G020520 emerge as potential candidates affecting both seed and fiber development in sea island cotton. These findings lay down a theoretical foundation for delving into the functional diversity of DHHC genes in cotton, thereby paving the way for the development of new breeding strategies and the optimization of cotton seed and fiber production, ultimately contributing to improved crop yield and quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.