Abstract
Failure mode and effects analysis (FMEA) is a prominent engineering technique for eliminating the potential failures emerged from various systems such as products, processes, designs, or systems. In the traditional FMEA, for each risk factor, severity, occurrence, and detectability ratings are multiplied and risk ranking number (RPN) is calculated. However, traditional FMEA has been subject of severe criticism in the literature and significant efforts have been made to overcome the shortcomings of the RPN. The present paper aims to put a step forward to enhance fuzzy FMEA by proposing a hybrid multi-attribute decision making model by combining fuzzy preference programming, fuzzy cognitive maps, and fuzzy graph-theoretical matrix approach. Fuzzy preference programming method is used to derive ratings of risk factors from incomplete, imprecise, and reciprocal pairwise comparison judgments. The causal dependencies among failure modes are modelled via fuzzy cognitive maps in order to capture the long term influences. Finally, fuzzy graph-theoretical matrix approach is employed to calculate risk priority indices of failure modes by taking into account interactions among risk factors. Although the FMEA method has been implemented in variety of technical problems, its potential in analyzing complex information systems have not been fully explored. Therefore, the proposed model is implemented in evaluating enterprise resource planning implementation risks in a real life case study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.