Abstract
Human gait is a spatio-temporal phenomenon and typifies the motion characteristics of an individual. The gait of a person is easily recognisable when extracted from a side view of the person. Accordingly, gait-recognition algorithms work best when presented with images where the person walks parallel to the camera (i.e. the image plane). A set of stances or key frames that occur during the walk cycle of an individual is chosen. This paper presents a novel approach adopted in automatic gait recognition in which the silhouette extracted is represented using Shannon entropy and extracts the height of the subject and periodicity of the gait. To classify unknown gait, they need to match the nearest neighbour in the stored database of extracted gait features, and the proposed approach are tested on the data sets and is found to be quite satisfactory in natural walk conditions. In addition, the proposed decision fusion enables the performance improvement by integrating multiple ones with different confidence measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.