Abstract

Food products are prone into contamination after a nuclear emission of radionuclides. While the mechanisms of emission and deposition of ultrafine radioactive particles are well documented, the transfer of these species from the atmosphere into plants is poorly assessed. This is evident in the lack of quantification of particles distributed within plants, especially regarding particles physical-chemical criteria to plant of different properties. Such knowledge gaps raise the concern about the representativeness of risk assessment tools designed for the transfer evaluation of ionic/soluble species to be qualified for simulating insoluble species exposure and proposes a possible underestimation. This highlights the possible need for special particle codes development to be implemented in models for future emissions. In addition, the later tools utilize transfer factors aggregating relevant sub-processes, suggesting another weak point in their overall reliability. As researchers specialized in the nuclear safety and protection, we intend in this perspective, to develop a compressive analysis of the interaction of ultrafine particles with plants of different specificities at different level processes starting from particles retention and gradual translocation to sink organs. This analysis is leveraged in providing insights for possible improvements in the current modeling tools for better real-life scenarios representation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call