Abstract

BackgroundIn the inner ear Wnt signaling is necessary for proliferation, cell fate determination, growth of the cochlear duct, polarized orientation of stereociliary bundles, differentiation of the periotic mesenchyme, and homeostasis of the stria vascularis. In neonatal tissue Wnt signaling can drive proliferation of cells in the sensory region, suggesting that Wnt signaling could be used to regenerate the sensory epithelium in the damaged adult inner ear. Manipulation of Wnt signaling for regeneration will require an understanding of the dynamics of Wnt pathway gene expression in the ear. We present a comprehensive screen for 84 Wnt signaling related genes across four developmental and postnatal time points.ResultsWe identified 72 Wnt related genes expressed in the inner ear on embryonic day (E) 12.5, postnatal day (P) 0, P6 and P30. These genes included secreted Wnts, Wnt antagonists, intracellular components of canonical signaling and components of non-canonical signaling/planar cell polarity.ConclusionA large number of Wnt signaling molecules were dynamically expressed during cochlear development and in the early postnatal period, suggesting complex regulation of Wnt transduction. The data revealed several potential key regulators for further study.

Highlights

  • Wnt signaling is an essential regulator of embryonic development and homeostasis [1]

  • We identified 72 Wnt related genes expressed in the inner ear on embryonic day (E) 12.5, postnatal day (P) 0, P6 and P30

  • The Wnt/calcium pathway is activated by binding of Wnt ligands to Frizzled receptors, which leads to activation of intracellular signaling molecules diacylglycerol (DAG), inositol trisphosphate (IP3) and release of calcium ions to activate calcium signaling effectors such as protein kinase C (PKC) and calcium/calmodulin kinase II (CaMKII) [5]

Read more

Summary

Background

In the inner ear Wnt signaling is necessary for proliferation, cell fate determination, growth of the cochlear duct, polarized orientation of stereociliary bundles, differentiation of the periotic mesenchyme, and homeostasis of the stria vascularis. In neonatal tissue Wnt signaling can drive proliferation of cells in the sensory region, suggesting that Wnt signaling could be used to regenerate the sensory epithelium in the damaged adult inner ear. Manipulation of Wnt signaling for regeneration will require an understanding of the dynamics of Wnt pathway gene expression in the ear. We present a comprehensive screen for 84 Wnt signaling related genes across four developmental and postnatal time points

Results
Introduction
Materials and Methods
Results and Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call