Abstract
In this paper, the influence of the inductive power transfer (IPT) coil geometry on the performance factors efficiency, power density, and stray field is studied for a public transport electric vehicle battery charging system. IPT coil geometries with rectangular winding and with double-D winding are compared based on the Pareto fronts obtained from a multi-objective optimization. In order to study the effect of the winding layout experimentally, two full-scale 50 kW/85 kHz hardware prototypes with the same outer coil dimensions ( $410\times 760\times 60$ mm3) and ferrite core structure are constructed. For both the prototypes, the measured dc–dc efficiency is approximately 95.5% at 50 kW with a 160 mm air gap and ideally positioned coils, which confirms the calculations. The positioning tolerance of the double-D prototype is inferior, because with coil misalignment the efficiency decays faster than for the rectangular winding prototype. Flux density measurements show that both the prototypes fulfill the ICNIRP 2010 standard at 800 mm lateral distance from the coil center. However, the measured magnetic stray field is a factor of two lower for the double-D prototype, which is a key advantage in high-power applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.