Abstract

A comprehensive evaluation of chiral pesticide at the stereoisomeric level is an effective strategy to improve efficiency and reduce risk on foods. For chiral sedaxane with four stereoisomers, there were 517–1013 fold differences in bioactivity for three kinds of phytopathogens and 3.73 fold differences in toxicity against model organism (Danio rerio) between the best (trans-1R2S-sedaxane) and worst stereoisomer (cis-1S2S-sedaxane). Trans-1R2S-sedaxane had the strongest affinity with the active site than other stereoisomers, which might contribute to the highest bioactivity. Trans-sedaxane was 28.2–331 fold more effective than cis-sedaxane. The dissipation half-lives of sedaxane stereoisomers ranged from 3.28 to 30.7 d in the test crops and soils. Trans-1S2R-sedaxane and cis-1S2S-sedaxane were preferentially dissipated in corn plants, while the preferential dissipation of trans-1R2S-sedaxane was found in wheat plants, potato plants and corn soil. The preferential dissipation of trans-sedaxane in corn plants, wheat plants, potato plants and corn soil would be environmentally friendly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call