Abstract

Quantitative real-time PCR (qPCR) is a highly reliable method for validating gene expression data in molecular studies due to its sensitivity, specificity, and efficiency. To ensure accurate qPCR results, it's essential to normalize the expression data using stable reference genes. This study aimed to identify suitable reference genes for qPCR studies in goats by evaluating 18 candidate reference genes (ACTB, BACH1, B2M, GAPDH, HMBS, HPRT1, PGK1, PPIA, PPIB, RPLP0, RPL19, RPS9, RPS15, RPS28, SDHA, TBP, UXT, and YWHAZ) in 10 different caprine tissues (heart, intestine, kidney, liver, lung, muscle, rumen, skin, spleen, and testis). An integrated tool called RefFinder, which incorporates various algorithms like NormFinder, GeNorm, BestKeeper, and ΔCt, was used to assess the stability of expression among these genes. After thorough analysis, ACTB, PPIB, and B2M emerged as the most stable reference genes, while RPL19, RPS15, and RPS9 were found to be the least stable. The suitability of the selected internal control genes was further validated through target gene analysis, confirming their efficacy in ensuring accurate gene expression profiling in goats. The study determined that the geometric average of ACTB, PPIB, and B2M creates an appropriate normalization factor for gene expression studies in goat tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.