Abstract

In recent years, considerable attention has been given to the utilization of biomass for producing bio-based foams, such as starch-based foams. Despite their renewability and widespread availability, these foams still present certain drawbacks regarding their poor mechanical properties and flammability. To tackle these concerns, a metal ion cross-linking strategy was employed by incorporating calcium ions (Ca2+) solution into foamed starch/cellulose slurry. Followed by ambient drying, starch/cellulose composite foam was successfully fabricated with a remarkable enhancement in various properties. Specifically, compared to the control sample, the compressive strength and modulus increased by 26.2 % and 123.0 %, respectively. Additionally, the Ca2+ cross-linked starch/cellulose composite foam exhibited excellent heat resistance, water stability, and flame retardancy. The limiting oxygen index (LOI) reached 52 %, with a vertical combustion rating of V-0. Along with the addition of 2 phr diatomite, it demonstrated a significant enhancement on flame retardancy with a LOI of 65 %, although the apparent density of the composite foam was not low enough. This study indicated a green and simple method to obtain starch-based composite foams with enhanced comprehensive properties including thermal, water stability, mechanical, and flame retardancy, expanding their potential applications in areas such as building materials and rigid packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call