Abstract

Pain is a significant public health burden in the United States, and current treatment approaches rely heavily on opioids, which often have limited efficacy and can lead to addiction. In humans, functional loss of the voltage-gated sodium channel Nav1.7 leads to pain insensitivity without deficits in the central nervous system. Accordingly, discovery of a selective Nav1.7 antagonist should provide an analgesic without abuse liability and an improved side-effect profile. Huwentoxin-IV, a component of tarantula venom, potently blocks sodium channels and is an attractive scaffold for engineering a Nav1.7-selective molecule. To define the functional impact of alterations in huwentoxin-IV sequence, we produced a library of 373 point mutants and tested them for Nav1.7 and Nav1.2 activity. We then combined favorable individual changes to produce combinatorial mutants that showed further improvements in Nav1.7 potency (E1N, E4D, Y33W, Q34S-Nav1.7 pIC50 = 8.1 ± 0.08) and increased selectivity over other Nav isoforms (E1N, R26K, Q34S, G36I, Nav1.7 pIC50 = 7.2 ± 0.1, Nav1.2 pIC50 = 6.1 ± 0.18, Nav1.3 pIC50 = 6.4 ± 1.0), Nav1.4 is inactive at 3 μm, and Nav1.5 is inactive at 10 μm We also substituted noncoded amino acids at select positions in huwentoxin-IV. Based on these results, we identify key determinants of huwentoxin's Nav1.7 inhibition and propose a model for huwentoxin-IV's interaction with Nav1.7. These findings uncover fundamental features of huwentoxin involved in Nav1.7 blockade, provide a foundation for additional optimization of this molecule, and offer a basis for the development of a safe and effective analgesic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.