Abstract

• Performance assessment of a solar air heater with different air barriers is performed. • Air obstacles can significantly enhance the system's energy and exergy efficiencies. • Vertical cylindrical obstacles have a greater performance compared to others. • Energy and exergy efficiencies can be enhanced up to 70% and 105%, respectively. • Relative CO 2 reduction potential is improved up to 170%. Although obstacles on the absorber surface of a solar air heater (SAH) can increase the thermal efficiency by creating turbulent conditions, they might reduce the system's exergy efficiency due to an increase in the pressure drop. In the present work, a 3-dimensional computational fluid dynamics (3D CFD) model is first developed to simulate conical obstacles, and the developed model is then validated using the available experimental data. To find optimal design features, obstacles with various shapes/geometries such as cylindrical, spherical, hemispherical, pyramidal, and cubical are investigated. To attain this goal, a comprehensive study is conducted by including energy, exergy, enviro-exergy, and thermo-hydraulic analyses. The results reveal that vertical cylindrical obstacles have better performance than other geometries as well as a flat absorber without obstacles. The average daily thermal efficiency of the system is increased by 69.16%, and the exergy efficiency of the system is increased by 103.16%. The relative CO 2 reduction potential (RCDRP) for a SAH with vertical cylinders is improved up to 168.7%. In addition, the vertical cylinder with a daily average thermo-hydraulic performance parameter of 1.2 shows the greatest thermo-hydraulic performance parameter (THPP) among other geometries, and the pyramidal obstacle with the THPP of 0.66 has the minimum performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call