Abstract

Tenascin-C (TNC), an extracellular matrix glycoprotein, plays a pivotal role in tumor growth. However, the mechanism whereby TNC affects tumor biology remains unclear. To investigate the exact role of TNC in primary tumor growth, a mouse mammary tumor cell line, GLMT1, was first developed. Subsequently, global gene expression in GLMT1-derived tumors was compared between wild-type (WT) and TNC-knockout (TNKO) mice. Tumors in WT mice were significantly larger than those in TNKO mice. DNA microarray analysis revealed 447 up and 667 downregulated in the tumors inoculated into TNKO mice as compared to tumors in WT mice. Validation by quantitative gene expression analysis showed that Tnc, Cxcl1, Cxcl2, and Cxcr2 were significantly upregulated in WT mice. We hypothesize that TNC stimulates the CXCL1/2-CXCR2 pathway involved in cancer cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.