Abstract

BackgroundLarge-scale genome reduction has been performed to significantly improve the performance of microbial chassis. Identification of the essential or dispensable genes is pivotal for genome reduction to avoid synthetic lethality. Here, taking Streptomyces as an example, we developed a combinatorial strategy for systematic identification of large and dispensable genomic regions in Streptomyces based on multi-omics approaches.ResultsPhylogenetic tree analysis revealed that the model strains including S. coelicolor A3(2), S. albus J1074 and S. avermitilis MA-4680 were preferred reference for comparative analysis of candidate genomes. Multiple genome alignment suggested that the Streptomyces genomes embodied highly conserved core region and variable sub-telomeric regions, and may present symmetric or asymmetric structure. Pan-genome and functional genome analyses showed that most conserved genes responsible for the fundamental functions of cell viability were concentrated in the core region and the vast majority of abundant genes were dispersed in the sub-telomeric regions. These results suggested that large-scale deletion can be performed in sub-telomeric regions to greatly streamline the Streptomyces genomes for developing versatile chassis.ConclusionsThe integrative approach of comparative genomics, functional genomics and pan-genomics can not only be applied to perform a multi-tiered dissection for Streptomyces genomes, but also work as a universal method for systematic analysis of removable regions in other microbial hosts in order to generate more miscellaneous and versatile chassis with minimized genome for drug discovery.

Highlights

  • Essential genes identified by experimental approaches are gathered to develop the Database of Essential Genes (DEG) in order to facilitate the prediction of essential genes in other sequenced genomes [10]

  • Based on comparative genomic analysis, genome-reduction has been performed in various microbial cells like E. coli, Bacillus subtilis, Pseudomonas putida, Cyanobacterium, Aspergillus nidulans, Schizosaccharomyce pombe and Streptomyces [14,15,16,17,18,19,20]

  • Several model representatives of Streptomyces, S. albus J1074, S. lividan TK24 and S. coelicolor A3(2), S. avermitilis MA-4680 and S. griseus belonged to Group I, II and III, respectively

Read more

Summary

Introduction

Large-scale genome reduction has been performed to significantly improve the performance of micro‐ bial chassis. Taking Streptomyces as an example, we developed a combinatorial strategy for systematic identification of large and dispensable genomic regions in Streptomyces based on multi-omics approaches. Comparative genomics was the main approach to analyze non-essential and removable genomic regions, which mainly include biosynthesis gene clusters (BGCs), mobile genetic elements (MGEs), genome islands (GIs), insertion sequences (ISs) or other elements from horizontal gene transfer (HGT), on a large scale. A > 1.4-Mb segment from the left sub-telomeric region was deleted directly by Cre/loxP recombinant system and further endogenous gene clusters were removed one by one to construct a series of genome-streamlined S. avermitilis mutants SUKAs which have been widely used to efficiently express a variety of heterologous gene clusters [14]. It is an urgent need to develop more systematic strategies for dissecting dispensable genomic regions

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call