Abstract
Board level solder joint reliability is a critical issue for Quad Flat Non-lead Package (QFN), a type of leadframe CSP, during the thermal cycling test. However, currently there are very few papers available on fatigue modeling and thermal cycling test of QFN on board. In this paper, a parametric 3D FEA sliced model is built for QFN (4/spl times/4, 5/spl times/5, 6/spl times/6, 7/spl times/7, and 8/spl times/8) and PowerQFN-8/spl times/8 on board with considerations of detailed pad design, realistic shape of solder joint and solder fillet, and non-linear material properties. It has the capability to predict the fatigue life of solder joint during the thermal cycling test. The fatigue model applied is based on Darveaux's approach with non-linear viscoplastic analysis of solder joints. The solder joint damage model is used to establish a connection between the strain energy density (SED) per cycle obtained from the FEA model and the actual characteristic life during the thermal cycling test. Higher SED leads to shorter fatigue life. For the test vehicles studied, the maximum SED is observed mostly at the top corner of peripheral solder joint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.