Abstract
Carbohydrate-active enzymes (CAZymes) are central to the biosynthesis and modification of the plant cell wall. An ancient clade of bifunctional plant endo-glucanases (EG16 members) was recently revealed and proposed to represent a transitional group uniting plant xyloglucan endo-transglycosylase/hydrolase (XTH) gene products and bacterial mixed-linkage endo-glucanases in the phylogeny of glycoside hydrolase family 16 (GH16). To gain broader insights into the distribution and frequency of EG16 and other GH16 members in plants, the PHYTOZOME, PLAZA, NCBI and 1000 PLANTS databases were mined to build a comprehensive census among 1289 species, spanning the broad phylogenetic diversity of multiple algae through recent plant lineages. EG16, newly identified EG16-2 and XTH members appeared first in the green algae. Extant EG16 members represent the early adoption of the β-jellyroll protein scaffold from a bacterial or early-lineage eukaryotic GH16 gene, which is characterized by loop deletion and extension of the N terminus (in EG16-2 members) or C terminus (in XTH members). Maximum-likelihood phylogenetic analysis of EG16 and EG16-2 sequences are directly concordant with contemporary estimates of plant evolution. The lack of expansion of EG16 members into multi-gene families across green plants may point to a core metabolic role under tight control, in contrast to XTH genes that have undergone the extensive duplications typical of cell-wall CAZymes. The present census will underpin future studies to elucidate the physiological role of EG16 members across plant species, and serve as roadmap for delineating the closely related EG16 and XTH gene products in bioinformatic analyses of emerging genomes and transcriptomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.