Abstract

In this paper, a comprehensive cost oriented dynamic predictive maintenance policy based on mission reliability state is developed for a multi-state single-machine manufacturing system. In view of the inherent polymorphism of manufacturing systems (i.e., dynamic production scheduling and performance degradation), the connotation of mission reliability of equipment is defined and modeled based on the processing capacity distribution which integrates multiple fault data. Further, the relationship between mission reliability and performance of equipment is established by using the unavailability as the intermediary. The optimal predictive maintenance policy, the best mission reliability threshold for performing predictive maintenance action, is obtained by minimizing the comprehensive cost which includes processing capacity loss, corrective maintenance cost, predictive maintenance cost and indirect loss caused by failing to meet due dates over the planning period. This paper will also evaluate a manufacturing system of the cylinder head of an automotive engine as a case study to illustrate the effectiveness and advantages of the proposed method. The final result shows that a more significant economic benefit can be achieved by the proposed approach, which considers the mission reliability and comprehensive cost relative to the periodic preventive maintenance policy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call