Abstract

This paper presents a comprehensive comparison between Vision Transformers and Convolutional Neural Networks for face recognition related tasks, including extensive experiments on the tasks of face identification and verification. Our study focuses on six state-of-the-art models: EfficientNet, Inception, MobileNet, ResNet, VGG, and Vision Transformers. Our evaluation of these models is based on five diverse datasets: Labeled Faces in the Wild, Real World Occluded Faces, Surveillance Cameras Face, UPM-GTI-Face, and VGG Face 2. These datasets present unique challenges regarding people diversity, distance from the camera, and face occlusions such as those produced by masks and glasses. Our contribution to the field includes a deep analysis of the experimental results, including a thorough examination of the training and evaluation process, as well as the software and hardware configurations used. Our results show that Vision Transformers outperform Convolutional Neural Networks in terms of accuracy and robustness against distance and occlusions for face recognition related tasks, while also presenting a smaller memory footprint and an impressive inference speed, rivaling even the fastest Convolutional Neural Networks. In conclusion, our study provides valuable insights into the performance of Vision Transformers for face recognition related tasks and highlights the potential of these models as a more efficient solution than Convolutional Neural Networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.