Abstract

Dormancy Associated MADS-box genes are SVP/MADs-box members and supposed to play crucial roles in plant dormancy of perennial species. In Prunus mume, PmDAM6 has been previously identified to induce plant dormancy. In the current study, six PmDAMs were cloned in P. mume and functionally analyzed in yeast and tobacco to detect the roles of the genes paralogous to PmDAM6. The expression patterns together with sequence similarities indicate that PmDAMs are divided into two sub-clades within SVP group. Moreover, PmDAMs are verified to take part in the development of different plant organs, specifically the flower buds, in some intricate patterns. Furthermore, the PmDAM proteins are found to have special functions by forming corresponding protein complex during the development of flower bud and induction of dormancy. In particular, when PmDAM1 dominating in flower bud in the warm months, the protein complexes are consisted of PmDAM1 itself or with PmDAM2. With the decrease temperatures in the following months, PmDAM6 was found to be highly expressed and gradually changed the complex structure to PmDAM6-protein complex due to strong binding tendencies with PmDAM1 and PmDAM3. Finally, the homodimers of PmDAM6 prevailed to induce the dormancy. The results obtained in the current study highlight the functions of PmDAMs in the tissue development and dormancy, which provide available suggestions for further explorations of protein-complex functions in association with bud growth and dormancy.

Highlights

  • For woody plants, bud formation is often concomitant with its ability to enter dormant state (Rohde and Bhalerao, 2007) and, flower bud development possesses a key status in flowering time alterations

  • There were six DAM genes in the P. mume genome named PmDAM1, PmDAM2, PmDAM3, PmDAM4, PmDAM5, and PmDAM6

  • The CDS sequences of PmDAM1-6 were of 708bp, 723bp, 708bp, 669bp, 705bp, and 726bp, encoding for 235, 240, 235, 222, 234, and241 amino acids, respectively

Read more

Summary

Introduction

Bud formation is often concomitant with its ability to enter dormant state (Rohde and Bhalerao, 2007) and, flower bud development possesses a key status in flowering time alterations. To explain this important phenomenon, several models of floral organogenesis have been proposed for specimen plants (Theissen, 2001; Causier et al, 2010). In northern China, it can bloom early in the spring after getting a quick release from dormancy. Despite the fact that DAM genes, members of MADSbox gene family, are initially associated with plant dormancy and its release, functional associations of these genes remain poorly defined

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.