Abstract
The conformational equilibria and guest exchange process of a resorcin[4]arene derived self‐folding cavitand receptor have been characterized in detail by molecular dynamics simulations (MD) and 1H EXSY NMR experiments. A multi‐timescale strategy for exploring the fluxional behaviour of this system has been constructed, exploiting conventional MD and accelerated MD (aMD) techniques. The use of aMD allows the reconstruction of the folding/unfolding process of the receptor by sampling high‐energy barrier processes unattainable by conventional MD simulations. We obtained MD trajectories sampling events occurring at different timescales from ns to s: 1) rearrangement of the directional hydrogen bond seam stabilizing the receptor, 2) folding/unfolding of the structure transiting partially open intermediates, and 3) guest departure from different folding stages. Most remarkably, reweighing of the biased aMD simulations provided kinetic barriers that are in very good agreement with those determined experimentally by 1H NMR. These results constitute the first comprehensive characterization of the complex dynamic features of cavitand receptors. Our approach emerges as a valuable rational design tool for synthetic host‐guest systems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.