Abstract

In this study a commercially liquid silicone rubber was filled with fumed silica particles in different concentrations and evaluated for medical applications. The thermal, morphological and mechanical properties of silicone/silica composite samples were studied before and after aging, flexural tests and immersion in saline environment. Understanding the effect of silica content, aging conditions and thickness (from 0.6 to 2 mm) of the samples on the behavior of these materials in different environments is crucial for applications as implantable devices. Before inducing any mechanical stress, tensile strength was found to increase for samples containing 3 or 5 wt% of fumed silica, depending on the thickness. A similar trend was observed after 106 flexes for tensile strength, storage modulus and hardness at room temperature, which increased with the concentration of fumed silica. Moreover, tensile strength decreased with increasing the thickness of the samples from 0.6 to 2 mm. The thermal degradation was found to start at higher temperature in the case of the composites as compared with neat silicone, however, the glass transition and melting temperatures were only slightly modified by the presence of the silica particles, regardless the mechanical aging. The MTT assay using L929 fibroblasts mouse cells showed a good short-time cytocompatibility for both silicone elastomer and the composite with 3 wt% fumed silica. Similarly, the measurement of the cytokine secretion revealed no inflammatory response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.