Abstract
Developing thermally stable reverse osmosis membranes is a potential game-changer in high-temperature water treatment. In this work, the performance of three commercial reverse osmosis membranes was evaluated with a series of high-temperature filtrations. The membranes were tested with different filtration methodologies: long-term operation, cyclic tests, controlled stepwise temperature increment, and permeability tests. The morphological and physiochemical characterizations were performed to study the impact of high-temperature filtration on the membranes' chemical composition and morphological characteristics. An increase in the temperature deteriorated the membrane performance in terms of water flux and salt rejection. Flux decline at high temperatures was recognized as the primary concern for high-temperature filtrations, restricting the applications of commercial membranes for long-term operations. This research provides valuable insights for researchers aiming to thoroughly characterize reverse osmosis membranes at high temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.