Abstract
The presence or absence of minimal residual disease (MRD) in patients with multiple myeloma (MM) has emerged as a useful marker to determine the depth of remission. MRD negativity as an endpoint has been shown to be associated with improved progression-free survival in many studies. MRD detection is therefore part of numerous clinical trial protocols for MM. At the present time, two methodologies are most widely accepted for MRD detection: (1) multicolor flow cytometry and (2) next-generation sequencing-based clonotype detection. While both of those methodologies enable accurate quantification of MRD in the bone marrow (BM), with sensitivity as low as 10−5 to 10−6, there are several limitations to these methods. First, these approaches reveal the presence or absence of MRD but provide limited molecular information about MM. More comprehensive characterization of MM cells at the MRD stage may identify molecular mechanisms of drug resistance. Second, MRD detection in the BM is typically performed at one time point only, but more frequent detection may define the duration of the MRD status and thus refine its prognostic value. Third, less-invasive approaches that avoid the discomfort and risk associated with BM biopsy would be highly desirable, especially in elderly or frail patients. “Liquid biopsy” for the detection and characterization of circulating MM cells may address these issues. Although MRD detection in the peripheral blood at the same sensitivity as in the BM may be challenging, the identification of patients who do not achieve MRD negativity might reduce the need for BM biopsies. Here, we give an overview of approaches that have been described to detect and characterize MM cells when they occur at very low frequencies in the peripheral blood or in the BM, emphasizing recently described next-generation sequencing approaches for more comprehensive characterization of circulating MM cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.