Abstract

The comprehensive branching analysis of complex polymers is still a challenge in advanced polymer analysis. Average branching information (average number and length of branches) can be obtained by spectroscopic methods, mainly NMR spectroscopy. The determination of the branching distribution, i.e., the concentration of macromolecules with a given number of branches, however, requires fractionation. Typically, size exclusion chromatography is used that separates the complex mixture with regard to molecular size in solution and not strictly with regard to the number of branches. In the present approach, model star-shaped polystyrenes were synthesized with a pre-determined architecture to give theoretical three-arm, four-arm, and six-arm structures. The branched samples were compared with a linear analogue of comparable molar mass known not to contain branching. Triple detector size exclusion chromatography with refractive index, multiangle light scattering, and online viscometer detection was used to determine absolute molar masses, radii of gyration, and branching distributions of the star-shaped polymers. 1H-NMR was used to calculate the average functionality and a reasonable agreement between the results of the two methods was obtained. Thermal gradient interaction chromatography and solvent gradient interaction chromatography were employed to separate the complex reaction products according to chemical composition (number of branches) and to resolve by-products. The separation capabilities of the two chromatographic techniques were compared and evaluated. Comprehensive two-dimensional liquid chromatography was used to separate the polydisperse star-shaped polystyrenes with regard to both branching and molar mass. Graphical abstract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.