Abstract

The work is devoted to the development and calculation of the strength of a new composite fan blade of the main ventilation of the mine, including the static and modal analyzes, as well as the stability analysis. The studies took into account the pre-determined aerodynamic loads on the lateral surface of the blade airfoil. The research was carried out by means of the finite element analysis of the thin-walled airfoil structure using the theory of thick multilayer shells. Estimation of the static strength was performed using the Hashin strength criterion. Analysis of the airfoil shell buckling resistance under the action of bending aerodynamic loads was performed using the methods of the linear stability theory. The modal analysis was performed taking into account the prestressed state from the action of static loads. The analysis of the research results testifies to the sufficient static and dynamic strength of the composite airfoil and the possibility of its implementation in a real rotary machine with the correct design of the fastening between the metal part of the blade root and the composite airfoil. The method of designing and analyzing the strength of the fan blade composite airfoil can be used to create new composite elements of turbomachines: the correct selection of thicknesses of different parts of the airfoil allows obtaining a uniform design with rational use of material; the optimal location of the stiffeners inside the airfoil shell avoids its excessive displacement and stress and the buckling effects, as well as achieving the maximal detuning level from the bending natural frequencies of vibrations; the proposed integrated approach to the strength assessment, which takes into account the effect of aerodynamic loads on the blade airfoil in the static analysis and the prestressed state during the modal analysis can significantly improve the accuracy and correctness of calculations. The approach described in the paper is new for low-speed rotary machines, as at present there are no comprehensive methods for designing composite blades of fans and compressors, and there is no mention of specific examples of their implementation in the projects implemented by manufacturers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call