Abstract

Anterior segment diseases are among the leading causes of irreversible blindness. However, a method capable of recognizing all important anterior segment structures for clinical diagnosis is lacking. By sharing the knowledge learned from each task, we proposed a fully automated multitask deep learning method that allows for simultaneous segmentation and quantification of all major anterior segment structures, including the iris, lens, cornea, as well as implantable collamer lens (ICL) and intraocular lens (IOL), and meanwhile for landmark detection of scleral spur and iris root in anterior segment OCT (AS-OCT) images. In addition, we proposed a refraction correction method to correct for the true geometry of the anterior segment distorted by light refraction during OCT imaging. 1251 AS-OCT images from 180 patients were collected and were used to train and test the model. Experiments demonstrated that our proposed network was superior to state-of-the-art segmentation and landmark detection methods, and close agreement was achieved between manually and automatically computed clinical parameters associated with anterior chamber, pupil, iris, ICL, and IOL. Finally, as an example, we demonstrated how our proposed method can be applied to facilitate the clinical evaluation of cataract surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.