Abstract

China’s vulnerability to fluvial floods necessitates extensive exposure studies. Previous large-scale regional analyses often relied on a limited set of assessment indicators due to challenges in data acquisition, compounded by the scarcity of corresponding large-scale flood distribution data. The integration of public datasets offers a potential solution to these challenges. In this study, we obtained four key exposure indicators—population, built-up area (BA), road length (RL), and average gross domestic product (GDP)—and conducted an innovative analysis of their correlations both overall and locally. Utilising these indicators, we developed a comprehensive exposure index employing entropy-weighting and k-means clustering methods and assessed fluvial flood exposure across multiple return periods using fluvial flood maps. The datasets used for these indicators, as well as the flood maps, are primarily derived from remote sensing products. Our findings indicate a weak correlation between the various indicators at both global and local scales, underscoring the limitations of using singular indicators for a thorough exposure assessment. Notably, we observed a significant concentration of exposure and river flooding east of the Hu Line, particularly within the eastern coastal region. As flood return periods extended from 10 to 500 years, the extent of areas with flood depths exceeding 1 m expanded markedly, encompassing 2.24% of China’s territory. This expansion heightened flood risks across 15 administrative regions with varying exposure levels, particularly in Jiangsu (JS) and Shanghai (SH). This research provides a robust framework for understanding flood risk dynamics, advocating for resource allocation towards prevention and control in high-exposure, high-flood areas. Our findings establish a solid scientific foundation for effectively mitigating river flood risks in China and promoting sustainable development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.