Abstract

BackgroundThere are clear differences in embryo development between angiosperm and gymnosperm species. Most of the current knowledge on gene expression and regulation during plant embryo development has derived from studies on angiosperms species, in particular from the model plant Arabidopsis thaliana. The few published studies on transcript profiling of conifer embryogenesis show the existence of many putative embryo-specific transcripts without an assigned function. In order to extend the knowledge on the transcriptomic expression during conifer embryogenesis, we sequenced the transcriptome of zygotic embryos for several developmental stages that cover most of Pinus pinaster (maritime pine) embryogenesis.ResultsTotal RNA samples collected from five zygotic embryo developmental stages were sequenced with Illumina technology. A de novo transcriptome was assembled as no genome sequence is yet published for Pinus pinaster. The transcriptome of reference for the period of zygotic embryogenesis in maritime pine contains 67,429 transcripts, which likely encode 58,527 proteins. The annotation shows a significant percentage, 31%, of predicted proteins exclusively present in pine embryogenesis. Functional categories and enrichment analysis of the differentially expressed transcripts evidenced carbohydrate transport and metabolism over-representation in early embryo stages, as highlighted by the identification of many putative glycoside hydrolases, possibly associated with cell wall modification, and carbohydrate transport transcripts. Moreover, the predominance of chromatin remodelling events was detected in early to middle embryogenesis, associated with an active synthesis of histones and their post-translational modifiers related to increased transcription, as well as silencing of transposons.ConclusionsOur results extend the understanding of gene expression and regulation during zygotic embryogenesis in conifers and are a valuable resource to support further improvements in somatic embryogenesis for vegetative propagation of conifer species. Specific transcripts associated with carbohydrate metabolism, monosaccharide transport and epigenetic regulation seem to play an important role in pine early embryogenesis and may be a source of reliable molecular markers for early embryogenesis.

Highlights

  • There are clear differences in embryo development between angiosperm and gymnosperm species

  • Next-generation sequencing (NGS) technologies applied to mRNA discover and profiling (RNA-seq) have proved useful to study plant gene regulation, in particular for the non-model species still missing a genome of reference

  • By using RNA sequencing (RNA-seq) technology to access the genes being expressed at specific embryo developmental stages, we have extended the previously published transcriptome profiling of maritime pine zygotic embryogenesis which had been obtained with DNA microarray hybridization technology

Read more

Summary

Introduction

There are clear differences in embryo development between angiosperm and gymnosperm species. Most of the current knowledge on gene expression and regulation during plant embryo development has derived from studies on angiosperms species, in particular from the model plant Arabidopsis thaliana. Next-generation sequencing (NGS) technologies applied to mRNA discover and profiling (RNA-seq) have proved useful to study plant gene regulation, in particular for the non-model species still missing a genome of reference (reviewed by [7, 8]). Other studies addressing gymnosperm embryogenesis using NGS (reviewed by [22]) include the reports by Yakovlev et al (2014) on embryo transcriptome changes in Picea abies under different temperature conditions [23], on the transcriptomes of embryogenic and non-embryogenic tissues of Picea balfouriana [24] on transcriptome comparative analysis of early somatic embryo formation and seed development in Araucaria angustifolia [25], on a comprehensive transcriptome survey of several Pinus lambertiana tissue types including embryos [26], on somatic embryo transcriptome profiling in Picea abies and [27] on the identification of carbohydrate-mediated responses associated with Araucaria angustifolia embryo formation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call