Abstract

A comprehensive approach was used to characterize speciation and leaching behavior of major, minor, and trace elements in electrostatic precipitator (ESP) ash from a Canadian MSW incinerator. Neutron activation analysis (NAA), X-ray powder diffraction (XRPD), scanning electron microscopy/X-ray microanalysis (SEM/XRM), Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS) were used to quantify elements, describe particles and phase associations, identify bulk and surface mineral phases, and identify the speciation of elements. SEM/XRM showed a complex polycrystalline material covering aluminosilicate spheres. XPS, as a surface technique, provided information on speciation at the particle surface where leaching first occurs. SIMS showed molecular fragments indicative of speciation and enrichment of volatile species (K, Zn, Cl, S, Pb) in the fine polycrystalline material. Many of these phases readily dissolve during leaching. Dissolution behavior and pH-dependent leaching could be modeled with the geochemical thermodynamic equilibrium model MINTEQA2. The abilityto model leaching behavior provides an opportunity to examine possible disposal or treatment behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.