Abstract
Over the past decade, mass spectrometric performance has greatly improved in terms of sensitivity, dynamic range, and speed. By contrast, only limited progress has been accomplished with regard to automation, throughput, and robustness of the proteomic sample preparation process upstream of mass spectrometry. The present work delivers an optimized analysis of human plasma samples in both small preclinical and large clinical studies, enabled by the development of a highly automated quantitative proteomic workflow. Several iterative evaluation and validation steps were performed before process "design freeze" and development completion. A robotic liquid handling workflow and platform (including reduction, alkylation, digestion, TMT labeling, pooling, and purification) were shown to provide better quantitative trueness and precision than manual operation at the bench. Depletion of the most abundant human plasma proteins and subsequent buffer exchange were also developed and integrated. Finally, 96 identical pooled human plasma samples were prepared in a 96-well plate format, and each sample was individually subjected to our developed workflow. This test revealed increased throughput and robustness compared with to-date published manual or less automated workflows. Our workflow is ready-to-use for future (pre-) clinical studies. We expect our work to facilitate, accelerate, and improve clinical proteomic discovery in human blood plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.